
科目	機能・設計系-1- A	受験番号	
科目	機能・設計系-1- A		
	_	※解笈け 占線上り下に記入すること	

問題 同じ質量Mの2種類の原子が、右図のようにバネ定数Cおよび10Cで結ばれた1次元バネモデルを考える.このとき、以下の問いに答えよ.ただし、隣接原子間の距離はa/2であるとする.

1) s 番目のそれぞれの原子の変位量を u_s , v_s とすると, u_s および v_s に関する相対変位は, それぞれ u_s-v_{s-1} および u_s-v_s ,

 $v_s - u_{s+1}$ および $v_s - u_s$ と表される. このとき, u_s および v_s についての運動方程式を記せ.

- 2) これらの運動方程式は $u_s = u_0 \exp(isKa) \exp(-i\omega t)$, $v_s = v_0 \exp(isKa) \exp(-i\omega t)$ で表される解 u_s および v_s をもつ. これらを運動方程式に代入して得られる連立方程式を記せ. ただしKを波数, ω を角振動数とする.
- 3) この連立方程式が $u_0 = v_0 = 0$ 以外の解をもつためには、係数 u_0 および v_0 の行列式がゼロであることが必要である.このとき成立するKを含む ω の 4 次方程式の係数 A および B を記し、 ω の一般解を求めよ.
- 4) K=0 および $K=\pi/a$ において、 ω はそれぞれ 2 つの値をもつ.これらの値を求めるとともに、その値を用いて分散関係のグラフを描け.また、これら低振動数と高振動数の ω の分岐はそれぞれ何モードに対応しているか答えよ.

解答欄

$1) u_s:$		v_s :	
2) 運動方程式 ①		運動方程式 ②	
3)4次方程式:	ω の一般解	:	分散関係:
$\omega^4 - A \omega^2 + B (1 - \cos Ka) = 0$			
ただし, A: B:			
4) K = 0:	$K=\pi/\alpha$:		
$\omega =$,	ω =	,	
低振動数 ω: モード	高振動数 ω	: モード	
		i	

科目	機能・設計系-1- B	受験番号			
科目	機能・設計系-1- B				

問題 以下の問いに答えよ. ただし、電子は近似的に自由電子として取り扱えるものとする. また解答には、電子の質量 m、プランク定数 \hbar 、L, ε , N_1 , N_2 , および π のうち必要なものを用いよ.

- 1) 実空間において、一辺の長さが L の立方体の金属を考える. このとき、対応する逆空間において 1 個のk点が占める体積を求めよ.
- 2) 立方体の金属中に N_1 個の電子が存在するとき、電子の状態密度 $D_1(\varepsilon) = dN_1/d\varepsilon$ を求めよ.
- 3) 実空間において、一辺の長さが L の正方形の 2 次元金属を考える.この 2 次元金属中に N_2 個の電子が存在するとき、フェルミ波数 k_F 、およびフェルミエネルギー ε_F を求めよ.
- 4) 3) の2次元金属中に存在する、電子の状態密度 $D_2(\varepsilon)$ を求めよ.

科目	機能・設計系-2-A	受験番号			
科目	機能・設計系-2-A				
	※解答は、点線より下に記入すること.				

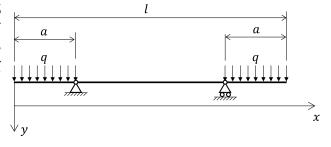
問題 鋼に関する以下の問いに答えよ.

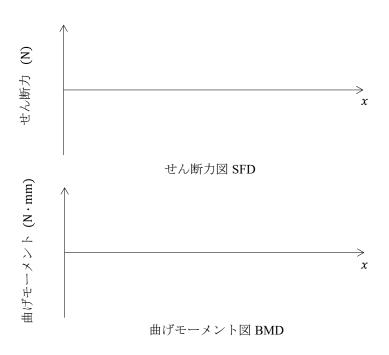
- 1) 共析炭素鋼の T.T.T.曲線を描き、その図の特徴について詳しく説明せよ.
- 2) ステンレス鋼の定義, 種類と特性について詳しく説明せよ.

科目	機能・設計系-2-B	受験番号			
科目	機能・設計系-2-B				
	※解答は、点線より下に記入すること.				

問題 非鉄金属材料に関する以下の問いに答えよ.

- 1) Al-Cu-Mg 合金の時効析出過程について説明せよ.
- 2) 工業用純銅の種類と製法について説明せよ.


科目	機能・設計系-2- C	受験番号	氏 名	
科目	機能・設計系-2- C			


※解答は,点線より下に記入すること. ------

(注:この用紙の問題への解答はこの面のみとし、裏面にはしないこと.)

問題 右図に示す長さl (mm)の単純梁の両端の突き出し部 の長さa (mm)の箇所に単位長さ当たりq (N/mm)の下 向きの等分布荷重が作用しているとき、梁全体のせん 断力図 SFD、曲げモーメント図 BMD を描け. ただ

し, 答えの図だけでなく, 導出過程を明記すること.

